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Conformation of local denaturation in double-stranded DNA

Wokyung Sung and Jae-Hyung Jeon
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea

~Received 7 August 2003; published 12 March 2004!

Double-stranded DNA~dsDNA! undergoes a denaturing transition above which the strands unbind com-
pletely. At temperatures~including the physiological temperature! below the transition the base pairs tend to
unbind locally, giving way to loops, i.e., locally denatured states. In the flexible-chain model, the imaginary
time Schro¨dinger equation describes the interstrand distance distribution of dsDNA with the time variable
replaced by the sequence number. We transform the equation to the Fokker-Planck equation~FPE!, which
provides a convenient and powerful analytical method and, via the equivalent Langevin equation, a simulation
scheme. The temperature-dependent potential that emerges in the FPE manifests how the DNA conformation
changes dramatically near the transition temperature. We present several simulation plots along with analytical
results illustrating the order parameter~concentration of bound base pairs!, base pair distance correlation
function, and loop size distribution at different temperatures.
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I. INTRODUCTION

DNA is a biomolecule that exhibits complex hierarchic
structures in the nucleus to safely and effectively store
genetic information needed in living organisms. In natu
DNA exists predominantly in theB-form structure, a right-
handed helix consisting of two strands, to protect the b
pairs against background chemical contamination. Howe
when replication/transcription processes begin, the dup
structure is partially broken by external enzymes, giving w
to loop ~or bubble! formations~Fig. 1! for reading the se-
quence@1#. To obtain some information relevant to the pr
cess, forced-unzipping experiments on DNA have rece
been extensively performed using several single-molec
tools. For example, with microapparatus such as opt
tweezers, atomic force microscopy cantilevers, and magn
tweezers, one can now measure the forces needed to u
~or unwind! a single DNA strand with piconewton resolutio
and the unzipped displacements on the nanometer scale@2#.

Double-stranded~ds! DNA can be globally denaturated b
intrinsic thermal fluctuation as well as the external mecha
cal force mentioned above. The DNA undergoes a dena
ation ~or melting! transition at a critical temperatureTc
~350–400 K!, above which a dsDNA molecule separates in
two single-stranded DNA molecules@3#. This phenomenon
regarded as a rare and novel example showing a o
dimensional phase transition, has been a hot issue sinc
1960s. It was found by several authors@4# that the denatur-
ation transition is a kind of unbinding transition, driven b
the entropic gain which is dominant over the internal ene
loss. But the discontinuity and multistep nature of the me
ing curve were not sufficiently explained. Recently more a
vanced studies including aspects of real DNA are progre
ing; e.g., sequence heterogeneity@5,6#, stiffness and
excluded volume effect of the strands@7–9#, and helical
structures@10#.

Also, the local denaturation phenomenon or loop form
tion along DNA is possible due to the thermal fluctuati
even far belowTc @3,11#. Since loop formation can be re
garded as a precursor to denaturation, it has been part
1063-651X/2004/69~3!/031902~7!/$22.50 69 0319
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studied in the course of denaturation studies. From the s
dard Peyrard-Bishop model@12,13# a Schro¨dinger type equa-
tion for the interstrand distance distribution of dsDNA r
sults, allowing some information on static loop confo
mation. Peyrardet al. @12# also showed, using molecular dy
namics simulation on the model, that a large loop can
excited by thermal activation and localized as a breat
mode with a long lifetime. To investigate the nature of den
turation transitions, Carlonet al. @9# and Baiesiet al. @20#
recently studied the interstrand distance and loop size di
butions with the Poland-Scheraga model including the
cluded volume effect and chain stiffness. They numerica
found the critical exponents in the scaling forms of tho
distributions nearTc and showed that the first order nature
the transition is due to the excluded volume effect. Yet ma
aspects of DNA loop conformation for temperatures eith
physiological or approachingTc , even within the flexible-
chain model, remain to be studied analytically or simulatio
ally. Here, we introduce an alternative methdology, i.e.
stochastic approach which enables us to analytically eval
a number of statistical quantities for locally denaturat
loops, e.g., interstrand correlation function and loop distrib
tion.

Consider an experiment where a base pair~bp! of dsDNA
is unzipped with a given separation and ask what happen

FIG. 1. Schematic figure of the model dsDNA with a loop a
the Morse potential for the base pair interaction.
©2004 The American Physical Society02-1
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the bp at a distance away along the strands. The respons
be related to the correlation function of the interstrand d
tance in accordance with the linear response theory. The
relation function also gives valuable information on the s
bility of the duplex structure and cooperativity of the stra
characteristics of long chains. In order to theoretically inv
tigate this and related aspects of dsDNA conformation wit
the standard model of the flexible chain, which remain to
clarified, we formulate the problem within the well-know
Edwards~imaginary time Schro¨dinger! equation descriptive
of the interstrand distance distribution in Sec. II. We appro
mate the Green’s function as the sum of two contributio
one from the bound base pairs and the other from the
bound bp conformation regarded as free in the half space
facilitate the analysis further, we reformulate the problem
stochastic dynamics language by transforming the Edwa
equation to the equivalent Fokker-Planck equation~FPE! in
Sec. III. The transition probability and stationary probabil
distributions that result facilitate analytical evaluation of t
various statistical quantities in question, the average in
strand distance, correlation function, and average loop s
These quantities are also computed numerically using
equivalent Langevin equation, giving results that are in cl
agreement with the analytical results.

II. THE POLYMER GREEN’S FUNCTION FORMALISM

For a description of dsDNA conformation, we adopt t
standard model of flexible chains used by many auth
@5,8,12#, as recapitulated below. In the continuum lim
~where we treat chains as continuous strings!, the effective
Hamiltonian descriptive of dsDNA ofN base pairs is@14#

H5E
0

N

dnH 3kBT

2l k
2 F S ]r1

]n D 2

1S ]r2

]n D 2G1U~ ur12r2u!J .

~2.1!

The first term of the intergrand is the strand elastic energ
entropic nature due to the chain connectivity,l k is the seg-
mental length,r1(n),r2(n) denote the positions of the tw
strands at thenth base pair, andU(r ) is the Morse potentia
of hydrogen bonding between a base pair at a distancer ~Fig.
1!:

U~r !5De2a~r 2r m!~e2a~r 2r m!22!. ~2.2!

D is the depth of the potential well, andr m ,a21 are the
characteristic lengths of the potential, each representing
potential minimum and width. Throughout the paper, we
kB51 so thatb51/T. Other interactions due to mismatche
pairing, excluded volume effect, and twist energy will
neglected. In terms of the center of massR5(r11r2)/2 and
relative coordinatesr5r12r2 , the Hamiltonian can be re
written as the sum of two terms,

HR5E
0

N

dn
3T

l k
2 S ]R

]n D 2

, ~2.3!
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Hr5E
0

N

dnF 3T

4l k
2 S ]r

]nD 2

1U„r ~n!…G . ~2.4!

Of interest to us is the information concerning the relat
coordinate; from Eq.~2.4!, the Edwards equation is derive
@15#:

2
]

]n
G~r ,r0 ;n!5F2

l 2

6
¹ rW

21bU~r !GG~r ,r0 ;n!.

~2.5!

Here l 5& l k , andG(r ,r0 ;n) is the polymer Green’s func
tion descriptive of the relative probability of finding the di
tance of thenth bp atr , given the initial (n50) distance at
r0 . Because of the spherical symmetry of the potential,
are allowed to focus on the radial part,

2
]

]n
G~r ,r 0 ;n!5F2

l 2

6

]2

]r 2 1bU~r !GG~r ,r 0 ;n!.

~2.6!

The radial Green’s function can be expanded:

G~r ,r 0 ;n!5(
k

e2nekuk~r !uk~r 0!, ~2.7!

whereuk andek are the normalized eigenfunction and eige
value satisfying

F2
l 2

6

]2

]r 2 1bU~r !Guk~r !5ekuk~r !. ~2.8!

It should be noted that the indexk above includes not only
discrete bound states but also continuous unbound st
Also, we note that the one-dimensional equations~2.6!–~2.8!
are those encountered in the theory of polymer adsorption
a flat wall, with ther denoting the vertical distance from i
This analogy often gives valuable insight.

The eigenfunctions and eigenvalues for bound states w
the Morse potential are well known from the related proble
in quantum mechanics@16#:

un~r !5e2Ky~2Ky!b/2Ln
b~2Ky!, ~2.9!

en52
a2l 2

24
~22n2112K !2 ~2.10!

for the integern satisfying 0<n<(2K21)/2, wherey(r )
5exp@2a(r2rm)#, K5(6bD/ l 2a2)2, and b54/K22n21.
Ln

b is an associated Laguerre polynomial. Bound states
least one, can exist providede0,0 or T,Tc , where

Tc5
24D

a2l 2 ~2.11!

is the critical temperature of the unbinding~denaturation!
transition, above which the two strands separate globa
Using typical parameter valuesD50.25 eV, l k53.4 Å, and
a52.8 Å21, Tc is estimated to be approximately 400 K
This temperature is much lower than the bound strengthD
2-2
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>3000 K because it is determined by competition betwe
the internal energy of the bound pair and the entropy
broken pairs that can constitute loops. Using the same
rameters, we note that for two bound states to exist the t
perature should be lower thanTc/9'44 K. Thus, at physi-
ological temperatures and above, which are of our concer
suffices to consider only the ground state of eigenvaluee0 .
The ground state can be rewritten as

u0~r !5exp„2 1
2 ATc /Te2a~r 2r m!

2 1
2 a~ATc /T21!~r 2r m!…. ~2.12!

The other states in the summation of Eq.~2.7! form a con-
tinuum band of states~denoted by ‘‘c’’ below! separated by
the gap D52e05(a2l 2/24)@(Tc /T)1/221#2 from the
ground state~Fig. 2!, so that we can rewrite

G~r ,r 0 ;n!5enDu0~r !u0~r 0!1(
c

e2necuc~r !uc~r 0!.

~2.13!

As long as we consider a very long chain and largen
value, the first term of the above~the bound state term!
dominates; otherwise the other term, the unbound continu
contribution, albeit relatively small, should be considered
a consistent description. Here we propose that an unbo
chain outside the potential well is closely approximated b
free chain in the half spacer .0, i.e., the Green’s function
@17#

G0~r ,r 0 ;n!5S 3

2pnl2D
1/2

@e2~3/2nl2!~r 2r 0!2
2e2~3/2nl2!~r 1r 0!2

#

~2.14!

with the hard-core boundary conditionG0(r→0)50. Thus
we consider the ansatz

G~r ,r 0 ;n!5enDu0~r !u0~r 0!1G0~r ,r 0 ;n!, ~2.15!

which, upon substitution into Eq.~2.6! with ]G0 /]n
5( l 2/6)]2G0/]2r , is found to be valid provided
bU(r )G0(r ,r 0 ;n) is negligible. We confirm the validity of
the ansatz for largen: U(r ) is nonvanishing only within the
molecular distancer &r m , whereG0 , varying with a signifi-
cant value over the length scaler;(nl2)1/2, is quite small.
Equation ~2.15! is our central approximation; it yields no
only a simple and intuitive picture of the bp conformatio

FIG. 2. The spectrum of eigenvalues of Eq.~2.8! for the Morse

potentialU(r ) and the displaced oneŪ(r )5U(r )1D whereD is
the gap between the bound and unbound states.
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but also analytical tractability with well-defined validity, a
we will show next. We note here that a shift of the potent
level as shown in Fig. 2 does not affect the physics as fa
the bp conformation is concerned.

With the Green’s function, one can calculate a number
polymer properties. One is the average distance of thenth
base pair@15#

^r ~n!&5
***dr0drNdr rG~r N ,r ;N2n!G~r ,r 0 ;n!

**dr0drNG~r N ,r 0 ;N!
.

~2.16!

In the long-chain limit, ground state dominance is val
yielding

^r &5
*0

`dr ru0
2~r !

*dr u0
2~r !

. ~2.17!

In polymer adsorption,̂r& corresponds to the thickness of th
adsorbed layer, which is inversely proportional to the co
centration of adsorbed monomers. Therefore the invers
^r& is proportional to the order parameter, the fraction
bound base pairs, which is shown to vanish likeuT2Tcu on
approaching the denaturation transition.

In dealing with other variables of interest, i.e.,^r (n)& r 0
,

the average of the bp distance at the sequencen with the
initial bp distance given byr (0)5r 0 , and the related corre
lation function^r (n)r (0)&, the approach using the Green
function is either conceptually unclear or practically cumb
some. For example, one might be tempted to generalize
~2.16! and obtain

^r ~n!& r ~0!5
**drNdr rG~r N ,r ;N2n!G~r ,r 0 ;n!

*drNG~r N ,r 0 ;N!
.

~2.18!

As we shall see later, the above is not correct. We note
G, although it can be normalized, is not the probability tha
conserved asn goes on. An alternative language we prefer
the transition probabilityP(r ,r 0 ;n), which is conserved and
can remain finite, i.e., be stationary, asn approaches infinity.
In terms of this transition probability the average^r (n)& r 0

and the correlation function are defined appropriately as
well known:

^r ~n!& r 0
5E dr rP~r ,r 0 ;n!, ~2.19!

^r ~n!r ~0!&5E dr rr 0P~r ,r 0 ;n!Ps~r 0!. ~2.20!

Here,Ps(r ) is the stationary distribution. In the forthcomin
section, we transform the Edwards equation forG(r ,r 0 ;n)
into the Fokker-Planck equation forP(r ,r 0 ;n) with n now
regarded as time. With the Brownian~Fokker-Planck! lan-
guage, we can not only correctly evaluate the above qua
ties but also clearly provide the underlying physical pictu
2-3
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III. THE BROWNIAN LANGUAGE DESCRIPTION

The Fokker-Planck equation

]

]n
P~r ,r 0 ;n!5D ]

]r S ]

]r
1b

]V~r !

]r D P~r ,r 0 ;n! ~3.1!

describes the stochastic motion of a Brownian particle
diffusivity D subject to an external potentialV(r ), at a given
time n. As is known, the equation with the substitution

P~r ,r 0 ;n!5e2b@V~r !2V~r 0!#/2G~r ,r 0 ;n! ~3.2!

can be transformed to a Schro¨dinger-like equation for
G(r ,r 0 ;n) @18#:

]

]n
G~r ,r 0 ;n!5F2D ]2

]r 2 1Vs~r !GG, ~3.3!

whereVs(r ) is obtained by

Vs~r !5DFb2

4 S ]V

]r D 2

2
b

2

]2V

]r 2 G ,
5DebV~r !/2

]2

]r 2 e2bV~r !/2. ~3.4!

With the relationsD5 l 2/6 andVs5bU, we find that Eq.
~3.3! is the Edwards equation. The inverse problem of fin
ing V(r ) from U(r ) is given by rewriting Eq.~3.4! as

F2
l 2

6

]2

]r 2 1bU~r !Ge2bV~r !/250. ~3.5!

The equation shows thate2bV(r )/2 is the eigenfunction cor-
responding to the zero eigenvalue in the stationary Edwa
equation, Eq.~2.8!, u0(r )5c1/2e2bV(r )/2, wherec is a nor-
malization constant. Then Eq.~3.2! can be rewritten as

P~r ,r 0 ;n!5
u0~r !

u0~r 0! (k
e2nekuk~r !uk~r 0!. ~3.6!

In order to findV(r ), we note that our information concern
ing the bp conformation remains invariant with respect to
shift of the potential in the original Edwards problem. W
shift the potentialU(r ) to U(r )1D, where the shifted low-
est eigenvalue is zero,ē050 @Fig. 2~b!#, so that the transition
probability, which can be rewritten asP(r ,r 0 ;n)
5@u0(r )/u0(r 0)#@u0(r )u0(r 0)1(ce

2nēcuc(r )uc(r 0)#, re-
tains the stationarity:

P~r ,r 0 ;n→`!5Ps~r !5u0
2~r !5ce2bV~r !. ~3.7!

The eigenfunctionu0(r ), independent of the shift, readil
yields

bV~r !5S Tc

T D 1/2

e2a~r 2r m!1aF S Tc

T D 1/2

21G~r 2r m!, ~3.8!

apart from a constant term. As we see above,V(r ), the po-
tential under which the Brownian particle moves, has a s
03190
f

-

ds

a

-

gestive temperature dependence. Figure 3 shows that
temperatures far belowTc , the Brownian motion is mani-
festly confined in a narrow well around a small distan
;r m . As the temperature approachesTc , however, the po-
tential tends to be flat for larger, so that the Brownian mo-
tion becomes unbounded, with the average base pair dist
diverging. In this language, the central ansatz Eq.~2.15! is
rewritten as

P~r ,r 0 ;n!5
u0~r !

u0~r 0!
@u0~r !u0~r 0!1e2nDG0~r ,r 0 ;n!#. ~3.9!

To visualize and simulate the stochastic motion embod
in the above Fokker-Planck description, we consider
equivalent Langevin equation

g
dr~n!

dn
52

]V~r !

]r
1j~n!, ~3.10!

where g5T/D is the friction coefficient, andj(n) is
the Gaussian and white noise satisfyinĝj(n)&50,
^j(n)j(n8)&52gTd(n2n8). By integrating the Langevin
equation, one can make a move algorithm from which
trajectories of the Brownian particle as a function ofn are
simulated. In Fig. 4, we show ensembles of the base
distance of 500-bp-long dsDNA via a Langevin simulati
with initial distance put tor 05r m andDn50.0001. We use
the parameters introduced in Sec. II, withTc'400 K. Re-
markably, the thermally broken pairs appear to be ubiquit
even far belowTc . As the temperature increases approach
Tc , the loops tend to be larger and eventually become co
parable to DNA in size.

Using the definition Eq.~2.19!, the average distance i
given by

^r & r 0
5^r &`1^dr & r 0

. ~3.11!

Heredr 5r 2^r &` and

FIG. 3. Plots of temperature-dependent potentialV(r ). The x
axis ~Å! indicates the relative distance fromr m . The confinement
effect by the potential completely disappears atTc . The parameter
values are the same as in the previous section.
2-4
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FIG. 4. Profiles of base pair distances of 500-bp-long dsDNA molecules obtained via Langevin simulation for varying temperatur~a!
250, ~b! 300, ~c! 350, and~d! 385 K. All simulations are accomplished withr (0)5r m (Å) andDn50.0001. The parameters are the valu
presented in Sec. II, resulting inTc'400 K, where lots of thermally broken base pairs are ubiquitous even far belowTc , and a few large
loops can be seen at high temperatures. NearTc the size of the loops is the order of the length of the DNA itself.
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^r &`5E dr rPs~r !5
*0 dr re

*0
`dr e2bV~r ! ~3.12!

is the average over the stationary state achieved over
time ~largen!. It is identical to Eq.~2.17!. Figure 5 shows the
analytically calculated value of^r& as a function of tempera
ture. It is nearly identical to the result^r & r 0

that was obtained

by simulating a long chainn;104– 105 bps. ^r &21 is found
to be close to the experimental plot of the order param
~fraction of bounded complementary base pairs! @3#. The cor-
rection due to finiten can be obtained by

^dr & r 0
5e2nDE

0

`

dr r
u0~r !

u0~r 0!
G0~r ,r 0 ;n!. ~3.13!

Figure 6 showŝ r & r 0
at a physiological temperature wit

three different values ofr 0 . The simulation data using
Langevin dynamics are shown to be in close agreement
the results obtained by Eq.~3.13!, which demonstrates tha
our approximation~3.9! or ~2.15! is excellent. To evaluate
the integral we note thatu0(r ) is nonvanishing only over the
molecular distance, independent ofn, over whichG0 does
not vary appreciably. Consideringn large enough to assum
ur 6r 0u!(nl2)1/2 and temperature much lower thanTc where
the integral below is bounded, Eq.~3.13! can be rewritten as
03190
ng

er

th

^dr & r 0
'e2nDS 3

2pnl2D E
0

dr r
u0~r !

u0~r 0!

6rr 0

nl2
,

;
e2nD

n3/2 . ~3.14!

This function, also the correlation function shown next, d
cays exponentially as well as in a power-law-like fashio
The presence of a large gapD shows the stability of the DNA
duplex against spontaneous loop formation. When some
quence is unzipped by a certain microscopic manipulati
the disturbance along the neighboring sequences propag
over the correlation lengthD21, which is about 5 bps dis-
tance at a physiological temperature. On the other hand,
power-law decay is characteristic of the chain cooperativ
~connectivity!. The power-law and exponential decays inn
figure most naturally in the related correlation functio
^dr (n)dr (0)&5^r (n)r (0)&2^r &`

2 . From Eq.~2.20!,

^dr ~n!dr ~0!&5E dr0Ps~r 0!r 0^dr & r 0
,

'e2nDS 3

2pnl2D
1/2 6

nl2 F E dr u0~r !r 2G2

,

~3.15!
2-5
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which shows that under the identical conditions it thus sha
the same dependence onn as ^dr & r 0

studied above.
Finally, let us focus upon the loop size distribution. T

loop is defined by a random walk of base pair distance
returns, for the first time, to its initial distancer 0 , which is
set infinitesimally small. To calculate the distribution of th
first passage time~i.e., the loop size!, we apply the absorbing
boundary conditionP(r 0 ,nur 0)50 for n.0, i.e., wherever a
bp returns to its initial distancer 0 , the excursion is finished
The probability that the bp is separated by a distance la
than r 0 is given by

P~n,r 0!5E
r 0

`

dr P~r ,nur 0!, ~3.16!

in terms of which the probability that the random walk
arrives atr 0 in dn, i.e., the loop distribution, is given by@19#

FIG. 5. ^r& vs temperature. The numerical simulation values~tri-
angles! agree remarkably well with the analytical result~line! ^r &`

@Eq. ~3.12!#. To assure that̂r (n)& was independent ofr (0), we
considered very large values ofn in a long chainN5104– 105.

FIG. 6. ^r (n)& r 0
with severalr 0 values~10, 40, 100 Å!. The

curves obtained from Eqs.~3.11! and ~3.13! agree closely with the
simulation data.
03190
s
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er

pL~n!52
]

]n
P~n,r 0!. ~3.17!

pL(n) is solely given by the unbound~second! contribution
in Eq. ~3.9!, which naturally reflects the process of excitatio
~crossing! over the gap caused by base pair bonding. Us
the same approximation used before for finding^dr & r 0

, Eq.

~3.14!, one again obtainsP(n,r 0);e2nD/n3/2 for n larger
than the order of unity far belowTc . NearTc , however, the
approximation is not allowed, but instead Eq.~3.9! yields
P(n,r 0), which is proportional to 1/n1/2, not ton3/2. There-
fore we find that the loop distribution function for largen is
given by

pL~n!;H e2nD

n3/2 far below Tc ,

1

n3/2 near Tc .

~3.18!

We confirm the validity of the above results against our n
merical simulation for a number of temperatures. The lo
distribution at each temperature in Fig. 7 is given for 5
500-bp-long DNAs along with the theoretical expectati
represented by the dotted lines. As shown in the figu
pL(n) given by Eq.~3.18! is in good agreement with the dat
even for relatively smalln values and for a broad range o
temperatures. The combined exponential and power-law
cay of pL(n) closely resembles the recent result of t
Poland-Scheraga-~PS-! type model@9,20#, where the power
is larger than 3/2 due to the excluded volume effect a
chain stiffness. We find the average size of the loop as

^n&5
(nnpL~n!

(npL~n!
5

*nc

` e2nDn21/2dn

*nc

` e2nDn23/2dn
. ~3.19!

For T nearTc , it is found that̂ n&;D21/2;uT2Tcu21, irre-
spective of the cutoffnc , the scaling behavior obeyed by^r&.
This shows indeed that, as the denaturation transition is

FIG. 7. Loop size distributions for several temperatures. T
straight lines are the outcome of Eq.~3.18!, with the slopes given
by D ~note the vertical logarithmic scale!. Near Tc (T5395 K),
D'0, where the distribution follows a power law.
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proached, the loops tend to give way to fewer but lar
loops until the size grows to the size of the DNA molecu
itself, which was also demonstrated in the simulation res
~Fig. 4!.

IV. SUMMARY

In this paper, we introduced a Brownian~stochastic! de-
scription version of flexible polymer Green’s function theo
to study the interstrand~base pair! distance of dsDNA, and
several associated problems. Within our approach the b
pair distancer (n) is regarded as the coordinate of a Brow
ian particle moving under a temperature-dependent poten
with n indicating the segment number. The Fokker-Plan
and the equivalent Langevin equations are formulated fr
the Edwards~imaginary time Schro¨dinger! equation of base
pair distance distribution via the well-known transformati
rule. The interstrand distribution function is a sum of t
bound and unbound base pair contributions; the latter is
proximated by the free chain distribution in half space.

Using the Langevin equation, we performed several sim
lations of the DNA base pair distances with initial b
distance fixed asr (0)5r 0 in a broad range of temperatur
We observed that loop formation can be excited at temp
tures even far below the denaturation temperature (Tc), with
the average size of the loops growing as the tempera
increases towardTc . We also calculated the average a
the correlation function of the base pair distance@^r (n)& r 0

and ^r (n)r (0)&] by analytically solving the Fokker-Planc
equation. According to the results, the correlatio
@^dr (n)& r 0

,^dr (0)dr (n)&# decay as the product of expone
v.
.
ys

.
,

e
E

03190
r

lt

se

al,
k
m

p-

-

a-

re

s

tial (e2nD) and power-law (n23/2) behaviors provided thatn
is large enough and the temperature is far belowTc . This
result is in close agreement with our simulation data. Int
estingly, the loop size distribution is found to have the sa
n dependency, which, unlike the correlation function, is a
pliable to broad ranges ofn and temperature. Approachin
Tc , the loop size diverges likeuT2Tcu21, and its distribu-
tion eventually follows the power lawpL(n);n23/2. These
behaviors, also corroborated by our Langevin simulation,
consistent with the simulation result@20# recently obtained
by using the PS-type model that includes the chain semifl
ibility and the excluded volume effect.

Our methodology of treating the problem in the langua
of stochastics allows us to treat naturally not only quantit
like the correlation function and average loop size, but a
sequence heterogeneity and randomness, which can
treated as, in general, a colored noise changing in timen. The
stochastic dynamics paradigm that has recently been
tained for a variety of time-dependent fluctuations can b
guide to study DNA conformation. However, this methodo
ogy is limited to the flexible-chain model; adaptation to
more realistic model inclusive of chain semiflexibility an
helical structure remains as a future challenge.
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