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Conformation of local denaturation in double-stranded DNA
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Double-stranded DNAdsDNA) undergoes a denaturing transition above which the strands unbind com-
pletely. At temperatureéncluding the physiological temperaturbelow the transition the base pairs tend to
unbind locally, giving way to loops, i.e., locally denatured states. In the flexible-chain model, the imaginary
time Schralinger equation describes the interstrand distance distribution of dsDNA with the time variable
replaced by the sequence number. We transform the equation to the Fokker-Planck e@dtREonwhich
provides a convenient and powerful analytical method and, via the equivalent Langevin equation, a simulation
scheme. The temperature-dependent potential that emerges in the FPE manifests how the DNA conformation
changes dramatically near the transition temperature. We present several simulation plots along with analytical
results illustrating the order paramet@oncentration of bound base pajrbase pair distance correlation
function, and loop size distribution at different temperatures.
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[. INTRODUCTION studied in the course of denaturation studies. From the stan-
dard Peyrard-Bishop modgl2,13 a Schralinger type equa-
DNA is a biomolecule that exhibits complex hierarchical tion for the interstrand distance distribution of dsDNA re-
structures in the nucleus to safely and effectively store théults, allowing some information on static loop confor-
genetic information needed in living organisms. In nature,Mation. Peyraret al.[12] also showed, using molecular dy-

: : . } .+ namics simulation on the model, that a large loop can be
DNA exists predominantly in th&-form structure, a right excited by thermal activation and localized as a breather

ha_nded h_ellx consisting of two _strands, to_pro_tect the basﬁwode with a long lifetime. To investigate the nature of dena-
pairs against background chemical contamination. Howevegiation transitions, Carloet al. [9] and Baiesiet al. [20]

when replication/transcription processes begin, the duplexecently studied the interstrand distance and loop size distri-
structure is partially broken by external enzymes, giving wWayputions with the Poland-Scheraga model including the ex-
to loop (or bubblg formations(Fig. 1) for reading the se- cluded volume effect and chain stiffness. They numerically
quence{1]. To obtain some information relevant to the pro- found the critical exponents in the scaling forms of those
cess, forced-unzipping experiments on DNA have recentlyistributions neafl , and showed that the first order nature of
been extensively performed using several single-moleculéhe transition is due to the excluded volume effect. Yet many
tools. For example, with microapparatus such as opticahspects of DNA loop conformation for temperatures either
tweezers, atomic force microscopy cantilevers, and magnetighysiological or approaching@., even within the flexible-
tweezers, one can now measure the forces needed to unzipain model, remain to be studied analytically or simulation-
(or unwind a single DNA strand with piconewton resolution ally. Here, we introduce an alternative methdology, i.e., a
and the unzipped displacements on the nanometer E2hle stochastic approach which enables us to analytically evaluate

Double-strandegds) DNA can be globally denaturated by a number of statistical quantities for locally denaturated
intrinsic thermal fluctuation as well as the external mechaniloops, e.g., interstrand correlation function and loop distribu-
cal force mentioned above. The DNA undergoes a denatution.
ation (or melting transition at a critical temperaturé, Consider an experiment where a base fia of dsDNA
(350-400 K, above which a dsDNA molecule separates intois unzipped with a given separation and ask what happens to
two single-stranded DNA molecul¢8]. This phenomenon,
regarded as a rare and novel example showing a one i
dimensional phase transition, has been a hot issue since tr
1960s. It was found by several authdd that the denatur-
ation transition is a kind of unbinding transition, driven by
the entropic gain which is dominant over the internal energy g
loss. But the discontinuity and multistep nature of the melt-
ing curve were not sufficiently explained. Recently more ad-
vanced studies including aspects of real DNA are progress
ing; e.g., sequence heterogeneifp,6], stiffness and
excluded volume effect of the strandig-9], and helical
structureq10].

Also, the local denaturation phenomenon or loop forma-
tion along DNA is possible due to the thermal fluctuation
even far belowT. [3,11]. Since loop formation can be re- FIG. 1. Schematic figure of the model dsDNA with a loop and
garded as a precursor to denaturation, it has been partialtjie Morse potential for the base pair interaction.
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the bp at a distance away along the strands. The response can N
be related to the correlation function of the interstrand dis- Hr_f
tance in accordance with the linear response theory. The cor-

relation function also gives valuable information on the sta- o interest to us is the information concerning the relative

bility of the duplex structure and cooperativity of the Stra”dcoordinate; from Eq(2.4), the Edwards equation is derived
characteristics of long chains. In order to theoretically investg).

tigate this and related aspects of dsSDNA conformation within

dn . (2.9

0

3T (ar\2
Wk(&_n) +U(r(n))

the standard model of the flexible chain, which remain to be d 12 )
clarified, we formulate the problem within the well-known — o Gnroin)=| = = Vi+pU(r) |G(r.ro;n).
Edwards(imaginary time Schidinge) equation descriptive 2.5

of the interstrand distance distribution in Sec. Il. We approxi-

mate the Green'’s function as the sum of two contributionsHerel=v2l,., andG(r,rq;n) is the polymer Green’s func-
one from the bound base pairs and the other from the urtion descriptive of the relative probability of finding the dis-
bound bp conformation regarded as free in the half space. T@mnce of thenth bp atr, given the initial f=0) distance at
facilitate the analysis further, we reformulate the problem inr,. Because of the spherical symmetry of the potential, we
stochastic dynamics language by transforming the Edwardare allowed to focus on the radial part,

equation to the equivalent Fokker-Planck equatiBRE) in -

Sec. lll. The transition probability and stationary probability 1< 9 U G .
distributions that result facilitate analytical evaluation of the ~ g gz TAUD|GIrroin).
various statistical quantities in question, the average inter- (2.6
strand distance, correlation function, and average loop size. ) , .

These quantities are also computed numerically using th&Ne radial Green’s function can be expanded:

equivalent Langevin equation, giving results that are in close

agreement with the analytical results. G(r,ro;n)=>, e "ku(r)uy(ro), (2.7
K

J
—%G(r,ro;n)=

Il. THE POLYMER GREEN'S FUNCTION FORMALISM whereu, ande are the normalized eigenfunction and eigen-

For a description of dsDNA conformation, we adopt thevalue satisfying

standard model of flexible chains used by many authors
[5,8,19, as recapitulated below. In the continuum limit
(where we treat chains as continuous stringise effective
Hamiltonian descriptive of dsDNA di base pairs i$14] It should be noted that the indéxabove includes not only
discrete bound states but also continuous unbound states.
H de BkgT[(ar \2 [or,
= _ _ + | —
0 : 2|ﬁ oan on

Also, we note that the one-dimensional equati¢hé)—(2.8)
+U([ri—ra)) . are those encountered in the theory of polymer adsorption on
The first term of the intergrand is the strand elastic energy o{h
entropic nature due to the chain connectivlyy,s the seg-

2.1) a flat wall, with ther denoting the vertical distance from it.
mental lengthr,(n),r,(n) denote the positions of the two

12 52

~ g A wD=qum. 28

2

This analogy often gives valuable insight.

The eigenfunctions and eigenvalues for bound states with
e Morse potential are well known from the related problem
in quantum mechaniddl6]:

strands at thath base pair, antl/(r) is the Morse potential un(r)=e*Ky(2Ky)b’2Lﬁ(2Ky), (2.9
of hydrogen bonding between a base pair at a distariEgy.
1): a%l?
Enz—g(—zn—l-FZK)z (2.10
U(r):Defa(rfrm)(efa(rfrm)_z)_ (2.2

for the integern satisfying 0sn=<(2K—1)/2, wherey(r)

D is the depth of the potential well, ang,,a ! are the =be?<q—a(r—rm)1, K=(65D/I%a%)?, and b=4/K-2n—1.
characteristic lengths of the potential, each representing thlen IS @n associated Laguerre polynomial. Bound states, at
potential minimum and width. Throughout the paper, we put€ast one, can exist provide<0 or T<T,, where

kg=1 so that3=1/T. Other interactions due to mismatched 24D

pairing, excluded volume effect, and twist energy will be ) pp— (2.10)
neglected. In terms of the center of mé&s (r,+r,)/2 and a“l

relative coordinates=r;—r,, the Hamiltonian can be re-

written as the sum of two terms is the critical temperature of the unbindifidenaturatioh

transition, above which the two strands separate globally.
N 3T (9R\2 Using typical paramet_er valuéz=0.25 eV,Ik.=3.4 A, and
HR:f dn—z(—) , (23 @a=28 A~ T. is estimated to be approximately 400 K.
0 I \an This temperature is much lower than the bound streiyth
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BU(r)

185(r) but also analytical tractability with well-defined validity, as
_— we will show next. We note here that a shift of the potential
level as shown in Fig. 2 does not affect the physics as far as

the bp conformation is concerned.

With the Green’s function, one can calculate a number of
polymer properties. One is the average distance ofnthe
base paif15]

FIG. 2. The spectrum of eigenvalues of Eg.8) for the Morse N )
potentialU(r) and the displaced oné(r)=U(r)+A whereA is (r(n))= JITdrodrydrrG(ry,rsN=n)G(r,ro:n) _
the gap between the bound and unbound states. JJdrodryG(ry,ro;N)

(2.1

=3000 K because it is determined by competition between
the internal energy of the bound pair and the entropy 011. .
broken pairs that can constitute loops. Using the same pa/€!ding

rameters, we note that for two bound states to exist the tem- - 5
perature should be lower thaf,/9~44 K. Thus, at physi- (ry= Jodrrug(r)

n the long-chain limit, ground state dominance is valid,

ological temperatures and above, which are of our concern, it = Jdrug(r) 219

suffices to consider only the ground state of eigenvaljle

The ground state can be rewritten as In polymer adsorption(r) corresponds to the thickness of the
adsorbed layer, which is inversely proportional to the con-

Uo(r)=exp(— 3 VT /Te 3" m centration of adsorbed monomers. Therefore the inverse of
(r) is proportional to the order parameter, the fraction of
— 3a(NTJT=1)(r—rp)). (212 bound base pairs, which is shown to vanish like-T| on

approaching the denaturation transition.

The other states in the summation of E8.7) form a con- In dealing with other variables of interest, i.¢r(n));,,

tinuum band of state&lenoted by ¢€” below) separated by
the gap A=—eu=(a%l%24)[(T./T)¥>~1]> from the
ground statéFig. 2), so that we can rewrite

the average of the bp distance at the sequaneédth the

initial bp distance given by(0)=r,, and the related corre-

lation function(r(n)r(0)), the approach using the Green’s

function is either conceptually unclear or practically cumber-

G(r,ro;n)=e"ug(r)Ug(ro)+ >, e "eug(r)ug(ro). some. For example, one might be tempted to generalize Eq.
c (2.16 and obtain

(2.13
As long as we consider a very long chain and large (Mo :ffdrNdrrG(rN,r;N—n)G(r,rO;n).
value, the first term of the abovéhe bound state term " JdryG(ry,ro;N)
dominates; otherwise the other term, the unbound continuum (2.1

contribution, albeit relatively small, should be considered for

a consistent description_ Here we propose that an unbounfds we shall see later, the above is not correct. We note that
chain outside the potential well is closely approximated by &5, although it can be normalized, is not the probability that is
free chain in the half space>0, i.e., the Green’s function conserved as goes on. An alternative language we prefer is
[17] the transition probability?(r,ry;n), which is conserved and

can remain finite, i.e., be stationary, mapproaches infinity.
3 |2 B2t ro? (@ 1) In terms of this transition probability the average(n)),
M= — - )" — @~ 0 . . . . .
Go(r:roin) 2mnl? e € ] and the correlation function are defined appropriately as is
(2.149  well known:

with the hard-core boundary conditidB,(r—0)=0. Thus
we consider the ansatz (r(n)>r0=J drrP(r,rg;n), (2.19

G(r,ro;n)=euy(r)ug(ro)+Go(r,ro:n), (2.19
which, upon substitution into Eq(2.6) with 9Ggy/dn (r(n)r(O))—f drrroP(r.roin)Ps(ro).  (2.20
=(1%/6)9*Gy/d*r, is found to be valid provided
BU(r)Go(r,rq;n) is negligible. We confirm the validity of Here,P4(r) is the stationary distribution. In the forthcoming
the ansatz for large: U(r) is nonvanishing only within the section, we transform the Edwards equation &r,r;n)
molecular distance=<r,, whereG,, varying with a signifi-  into the Fokker-Planck equation f&(r,ry;n) with n now
cant value over the length scale-(n1?)Y2, is quite small. regarded as time. With the Brownigfokker-Planck lan-
Equation(2.15 is our central approximation; it yields not guage, we can not only correctly evaluate the above quanti-
only a simple and intuitive picture of the bp conformation ties but also clearly provide the underlying physical picture.
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IIl. THE BROWNIAN LANGUAGE DESCRIPTION
The Fokker-Planck equation

J aVv(r)
—+
ar ar

%P(r,ro,n)=DE P(r,rg;n) (3.2

describes the stochastic motion of a Brownian particle of

diffusivity D subject to an external potenti(r), at a given
time n. As is known, the equation with the substitution
P(r.ro;n)=e AVIITVIOIEG(r rgin) (32

can be transformed to a Schiinger-like equation for
G(r,ro;n) [18]:

d 7
ﬁ—nG(r,rO,n)= —Dﬁ—rz+vs(r)}G, (3.3
whereVg(r) is obtained by
B?[aV\? B o’V
VSW—D[Z ar| T2
52
— DeﬁV(r)/Zﬁ_rz e BV(NI2 (3.4)

With the relationsD=12/6 andV = BU, we find that Eq.

PHYSICAL REVIEW B9, 031902 (2004

10 T T T

BV(r)

e ; : !

FIG. 3. Plots of temperature-dependent poteridét). The x
axis (A) indicates the relative distance frorg,. The confinement
effect by the potential completely disappeard at The parameter
values are the same as in the previous section.

gestive temperature dependence. Figure 3 shows that, for
temperatures far below., the Brownian motion is mani-
festly confined in a narrow well around a small distance
~r.,. As the temperature approachgs, however, the po-
tential tends to be flat for large so that the Brownian mo-

(3.3 is the Edwards equation. The inverse problem of find+on hecomes unbounded, with the average base pair distance

ing V(r) from U(r) is given by rewriting Eq(3.4) as

12 52

— 5 52 T BU( e AR=0,

(3.9

The equation shows that #V(D'2 js the eigenfunction cor-

diverging. In this language, the central ansatz &jl15) is
rewritten as

‘n) — Uo(T) -nA .
P(r:ro'n)—m[uo(r)uo(ro)+e Go(r,ro;n)]. (3.9

responding to the zero eigenvalue in the stationary Edwards To visualize and simulate the stochastic motion embodied

equation, Eq(2.8), uy(r)=cY%e A2 wherec is a nor-
malization constant. Then E@3.2) can be rewritten as

Uo(r
P(r,ro;n)= LZ e "kuy(r)uy(ro).

Uo(ro) K 3.6

in the above Fokker-Planck description, we consider the

equivalent Langevin equation
dr(n)  aVv(r)
YTdn T T ar

+&(n), (3.10

In order to findV(r), we note that our information concern- where y=T/D is the friction coefficient, andé(n) is
ing the bp conformation remains invariant with respect to e&the Gaussian and white noise satisfying(n))=0,
shift of the potential in the original Edwards problem. We (£(n)&(n’))=2yTS&(n—n"). By integrating the Langevin

shift the potentiald(r) to U(r)+ A, where the shifted low-
est eigenvalue is zerey= 0 [Fig. 2b)], so that the transition
probability, which can be rewritten asP(r,rq;n)

=[uo(r)/uo(ro) Iluo(r)ue(ro) +=ce "eug(rjuc(ro)], re-
tains the stationarity:

3.7

The eigenfunctiorug(r), independent of the shift, readily

yields
%> 1/2_ L

P(r,ro;n—o)=Pyr)=ud(r)=ce AV,

T 1/2
,3V(r)=(7°) e A m4q

(r=ryn), (3.8

apart from a constant term. As we see abo¥g,), the po-

equation, one can make a move algorithm from which the
trajectories of the Brownian particle as a functionrofre
simulated. In Fig. 4, we show ensembles of the base pair
distance of 500-bp-long dsDNA via a Langevin simulation
with initial distance put tay=r,, andAn=0.0001. We use
the parameters introduced in Sec. Il, wilh=400 K. Re-
markably, the thermally broken pairs appear to be ubiquitous
even far belowl .. As the temperature increases approaching
T., the loops tend to be larger and eventually become com-
parable to DNA in size.

Using the definition Eq(2.19, the average distance is
given by

(Drg= (1) (00, (311

tential under which the Brownian particle moves, has a sugHere ér =r —(r)., and
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FIG. 4. Profiles of base pair distances of 500-bp-long dsDNA molecules obtained via Langevin simulation for varying tempeftajures:
250, (b) 300, (c) 350, and(d) 385 K. All simulations are accomplished witli0)=r, (A) and An=0.0001. The parameters are the values
presented in Sec. Il, resulting ,~400 K, where lots of thermally broken base pairs are ubiquitous even far Bglpwnd a few large
loops can be seen at high temperatures. Neahe size of the loops is the order of the length of the DNA itself.

Jodrre AV o 1’2J°c Uo(r) 6rrg
<r>oc:f drrPS(r)=W (3.12 (or), ~e >nl2 o r Ug(rg) NIZ°
e—nA
is the average over the stationary state achieved over long ~ (3.19

time (largen). It is identical to Eq(2.17). Figure 5 shows the
analytically calculated value @f) as a function of tempera-

ture. Itis nearly identical to the resyit), ' that was obtained Thjs function, also the correlation function shown next, de-
by simulating a long chain~10°—~1¢ bps.(r) !is found cays exponentially as well as in a power-law-like fashion.
to be close to the experimental plot of the order parameteThe presence of a large gapshows the stability of the DNA
(fraction of bounded complementary base pdig3. The cor-  duplex against spontaneous loop formation. When some se-
rection due to finiten can be obtained by guence is unzipped by a certain microscopic manipulation,
the disturbance along the neighboring sequences propagates
U(r) over the correlation lengtA ~*, which is about 5 bps dis-
Go(r,rg;n). (3.13 tance at a physiological temperature. On the other hand, the
Uo(To) power-law decay is characteristic of the chain cooperativity
(connectivity. The power-law and exponential decaysnin
Figure 6 shows(r),o at a physiological temperature with figure most naturally in the related correlation function

— 2
three different values of,. The simulation data using ¢°"(n)r(0))=(r(n)r(0))—(r):. From Eq.(2.20,
Langevin dynamics are shown to be in close agreement with
the results obtained by E@3.13, which demonstrates that

(5r>rO:e*”Af drr
0

our approximation(3.9) or (2.15 is excellent. To evaluate <5r(n)5r(0)>=J droPy(ro)ro(dr), ,

the integral we note thaty(r) is nonvanishing only over the 0

molecular distance, independent mf over whichG, does 3 \l2g4 2
not vary appreciably. Consideringlarge enough to assume ~ ”A<2) — f dr uo(r)rz} ,

Ir +ro|<(nl1?)Y2 and temperature much lower th@ipwhere 2anl®} nl

the integral below is bounded, E@®.13 can be rewritten as (3.195
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FIG. 7. Loop size distributions for several temperatures. The

3(',0 ' 3é0 ' 460 straight lines are the outcome of E®.18), with the slopes given

Temperature(K) by A (note the vertical logarithmic scaleNear T, (T=395K),
A~0, where the distribution follows a power law.
FIG. 5. (r) vs temperature. The numerical simulation val(teis
angle$ agree remarkably well with the analytical res(ibe) (r).. P
[Eq. (3.12]. To assure thafr(n)) was independent of(0), we pL(n)=——P(n,ry). (3.17
considered very large values pfin a long chainN=10*-10. an

which shows that under the identical conditions it thus share% L(En) ('; S)O I\?vlzigr;vr?gu?éltlhielilr(]e?:ct):?ri ecﬁ)ncoégggtf”eb;;gion
the same dependence oras(dr), studied above. g.42-9), y proc ; :
0 (crossing over the gap caused by base pair bonding. Using

Finally, let us focus upon the loop size distribution. Thehe same approximation used before for find{@y), , Eq.
loop is defined by a random walk of base pair distance tha{3 14, one again obtain®(n.rg)~e~"/n32 for n Tar or
returns, for the first time, to its initial distaneg, which is thén t’he orde? of unity far beI’0\0W NearT howevergthe
set infinitesimally small. To calculate the distribution of this approximation is notyallowed bcht insteacd, HG.9 iélds
first passage timé.e., the loop sizg we apply the absorbing P?ﬁ ro)., which is proportional' 0 T2 not to n372 _lyhere_

boundary conditiorP(ry,n|ry) =0 for n>0, i.e., wherever a . - . .
bp returns to its initial distance,, the excursion is finished. fore we find that the loop distribution function for larges

The probability that the bp is separated by a distance Iargeg'ven by
thanrg is given by e
e far below T,

P(n,r0)=fwdr P(r,n|ry), (3.1 pL(n)~ 1 (3.18
o g near Te.

in terms of which the probability that the random walker
arrives atr in dn, i.e., the loop distribution, is given fyl9]  We confirm the validity of the above results against our nu-
merical simulation for a number of temperatures. The loop
100 ) ' 00K [= r=0 distribution at each temperature in Fig. 7 is given for 500
14 . r°=40 500-bp-long DNAs along with the theoretical expectation
sod & . r:=10° i represented by the dotted lines. As shown in the figures,
5 --- analytical results p.(n) given by Eq.(3.18 is in good agreement with the data
. even for relatively smalh values and for a broad range of
L 1 temperatures. The combined exponential and power-law de-
] 4 1 cay of p_(n) closely resembles the recent result of the
0% : 4 Poland-ScheragdPS9 type model[9,20], where the power
1% : ] is larger than 3/2 due to the excluded volume effect and

3 3 chain stiffness. We find the average size of the loop as

To
»

<r(n)>

Lo A ] © A —NA—1/
e imemen e <>_2nan<n>_fnce n~*dn

- y v n)= == — .
; 100 20 300 Zapu(n) - fre ™" ¥dn

(3.19

FIG. 6. (r(n)),, with severalr, values(10, 40, 100 A. The ~ ForT nearT,, it s found that(n)~A Y2~ |T—T| "1, irre-

curves obtained from Eqg$3.11) and(3.13 agree closely with the spective of the cutoffi., the scaling behavior obeyed k.
simulation data. This shows indeed that, as the denaturation transition is ap-
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proached, the loops tend to give way to fewer but largetjal (e "*) and power-law § %) behaviors provided that

loops until the size grows to the size of the DNA moleculejs |arge enough and the temperature is far below This
itself, which was also demonstrated in the simulation resultegit is in close agreement with our simulation data. Inter-
(Fig. 4). estingly, the loop size distribution is found to have the same
n dependency, which, unlike the correlation function, is ap-
IV. SUMMARY pliable to broad ranges af and temperature. Approaching
T., the loop size diverges likeT—T| %, and its distribu-
tion eventually follows the power law, (n)~n~*2 These

scription version of flexible polymer Green’s function theory ! L .
to study the interstrantbase pair distance of dsDNA, and beha_wors, al_so corrol_)orate_d by our Langevin S|mulat_|0n, are
’ é)n5|stent with the simulation resu0] recently obtained

several associated problems. Within our approach the ba ; i . )
pair distance (n) is regarded as the coordinate of a Brown-%li?;'gg;?ﬁepes)gsgerg?gﬂ:::‘té?fggdes the chain semiflex-

. . 4 .
ian particle moving under a temperature-dependent potential Our methodology of treating the problem in the language

with n indicating the segment number. The Fokker—PIanckf tochasti llow to treat naturally not onl it
and the equivalent Langevin equations are formulated frong' Stochastics allows us fo treat haturaily not only quantities

the Edwardgimaginary time Schidingeh equation of base like the correlation function and average loop size, but also
pair distance distribution via the well-known transformation sequence heterogeneity and randomness, which can be

rule. The interstrand distribution function is a sum of thetreated as, in general, a colored noise changing in tirffée

bound and unbound base pair contributions; the latter is a| —tQChaSt'C dynamics paradigm that has recently been ob-

proximated by the free chain distribution in half space. amed for a variety of time-dependent fluctuatipns can be a
Using the Langevin equation, we performed several simugu'de to study DNA conformation. However, this methodol-
lations of the DNA base pair distances with initial bp ogy is limited to the flexible-chain model; adaptation to a

distance fixed as(0)=r, in a broad range of temperature. more realistic model inclusive of chain semiflexibility and
We observed that loop formation can be excited at tempera{]ellcal structure remains as a future challenge.

tures even far below the denaturation temperatiigg, (with

the average size of the loops growing as the temperature
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